Root Fernando–Kac subalgebras of finite type

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

Subalgebras of a Finite Monadic Boolean Algebra

For a finite n-element set X, n ≥ 1, let N [X] denote the number of elements of X and let p(n) denote the number of all partitions of X. If Bn is a Boolean algebra with n atoms, let A(Bn) be the set of all atoms of Bn. It is known that there exists a bijective correspondence between the set S(Bn) of all subalgebras of Bn and the set of all partitions of A(Bn), i.e., N [S(Bn)] = p(n). The follow...

متن کامل

Perturbations of Subalgebras of Type Ii1 Factors

In this paper we consider two von Neumann subalgebras B0 and B of a type II1 factor N . For a map φ on N , we define ‖φ‖∞,2 = sup{‖φ(x)‖2 : ‖x‖ ≤ 1}, and we measure the distance between B0 and B by the quantity ‖EB0 −EB‖∞,2. Under the hypothesis that the relative commutant in N of each algebra is equal to its center, we prove that close subalgebras have large compressions which are spatially is...

متن کامل

Normal Hopf Subalgebras in Cocycle Deformations of Finite Groups

We determine necessary and sufficient conditions, in grouptheoretical terms, for a Hopf subalgebra in a cocycle deformation of a finite group to be normal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2011

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2011.01.012